Me and My Brain: What the “Double-Subject Fallacy” reveals about contemporary conceptions of the Self

MiBMy latest essay for 3 Quarks Daily is up: Me and My Brain: What the “Double-Subject Fallacy” reveals about contemporary conceptions of the Self

Here’s an excerpt:
What is a person? Does each of us have some fundamental essence? Is it the body? Is it the mind? Is it something else entirely? Versions of this question seem always to have animated human thought. In the aftermath of the scientific revolution, it seems as if one category of answer — the dualist idea that the essence of a person is an incorporeal soul that inhabits a material body — must be ruled out. But as it turns out, internalizing a non-dualist conception of the self is actually rather challenging for most people, including neuroscientists.
[…]
 A recent paper in the Journal of Cognitive Neuroscience suggests that even experts in the sciences of mind and brain find it difficult to shake off dualistic intuitions. Liad Mudrik and Uri Maoz, in their paper “Me & My Brain”: Exposing Neuroscienceʼs Closet Dualism, argue that not only do neuroscientists frequently lapse into dualistic thinking, they also attribute high-level mental states to the brain, treating these states as distinct from the mental states of the person as a whole. They call this the double-subject fallacy. ( I will refer to the fallacy as “dub-sub”, and the process of engaging in it as “dub-subbing”.) Dub-subbing is going on in constructions like”my brain knew before I did” or “my brain is hiding information from me”. In addition to the traditional subject — “me”, the self, the mind — there is a second subject, the brain, which is described in anthropomorphic terms such as ‘knowing’ or ‘hiding’. But ‘knowing’ and ‘hiding’ are precisely the sorts of things that we look to neuroscience to explain; when we fall prey to the double-subject fallacy we are actually doing the opposite of what we set out to do as materialists.  Rather than explaining “me” in terms of physical brain processes, dub-subbing induces us to describe the brain in terms of an obscure second “me”. Instead of dispelling those pesky spirits, we allow them to proliferate!
Read the whole thing at 3QD:

Why can most people identify a color without a reference but not a musical note?

[I was asked this on Quora. Here’s a slightly modified version of my answer.]

This is an excellent question! I’m pretty sure there is not yet a definitive answer, but I suspect that the eventual answer will involve two factors:

  1. The visual system in humans is much more highly developed than the auditory system.
  2. Human cultures typically teach color words to all children, but formal musical training — complete with named notes — is relatively rare.

When you look at the brain’s cortical regions, you realize that the primary visual cortex has the most well-defined laminar structure in the whole brain. Primary auditory cortex is less structured. We still don’t know exactly how the brain’s layers contribute to sensory processing, but some theories suggest that the more well-defined cortices are capable of making more fine distinctions.

[See this blog post for more on cortical lamination:
How to navigate on Planet Brain]

However, I don’t think the explanation for the difference between music and color perception is purely neuroscientific. Culture may well play an important role. I think that with training, absolute pitch — the ability to identify the exact note rather than the interval between notes — could become more common. Speakers of tonal languages like Mandarin or Cantonese are more likely to have absolute pitch, especially if they’ve had early musical training. (More on this below.)

Also: when people with no musical training are exposed to tunes they are familiar with, many of them can tell if the absolute pitch is correct or not [1] Similarly, when asked to produce a familiar tune, many people can hit the right pitch. [2]. This suggests that at least some humans have the latent ability to use and/or recognize absolute pitch.

Perhaps with early training, note names will become as common as color words.

This article by a UCSD psychologist described the mystery quite well:

Diana Deutsch – Absolute Pitch.

As someone with absolute pitch, it has always seemed puzzling to me that  this ability should be so rare. When we name a color, for example as  green, we do not do this by viewing a different color, determining its  name, and comparing the relationship between the two colors. Instead,  the labeling process is direct and immediate.

She has some fascinating data on music training among tonal language speakers:

” Figure 2. Percentages of subjects who obtained a score of at least  85% correct on the test for absolute pitch. CCOM: students at the  Central Conservatory of Music, Beijing, China; all speakers of Mandarin.  ESM: students at Eastman School of Music, Rochester, New York; all  nontone language speakers.”

Looks like if you speak a tonal language and start learning music early, you are far more likely to have perfect pitch. (Separating causation from correlation may be tricky.)


References:

[1] Memory for the absolute pitch of familiar songs.
[2] Absolute memory for musical pitch: evidence from the production of learned melodies.

Quora: Why can most people identify a color without a reference but not a musical note?

A group composed of brilliant individuals will not automatically be the most brilliant group

Perhaps the whole can be better than the sum of its parts?

I came across a very interesting study on McGill University’s excellent Brain from Top to Bottom Blog.

In this study of collective intelligence, the researchers performed numerous statistical analyses. The most interesting finding that emerged from them, and that went beyond the debate about just what exactly collective intelligence might represent, was that this factor was not highly correlated with either the average intelligence of the groups’ members or with the intelligence of the group member who had scored the highest on the individual-intelligence test. In other words, a group composed of brilliant individuals will not automatically be the most brilliant group.
The psychologists did find some factors that let them predict whether a given group would be collectively intelligent. But to identify three, they had to look at factors associated with co-operation. The first such factor was the group’s overall social sensitivity—the members’ ability to perceive each other’s emotions. The second factor was equality in taking turns speaking during group decision-making. The third factor was the proportion of women in the group. This last finding is highly consistent with other data showing that women tend to be more socially sensitive than men and to take turns speaking more naturally than men do.



via The Collective Intelligence of Groups